Spring Boot + Spring AI Example (Chatbot Example)
author: Sai K
Introduction
In this tutorial, we will guide you through the steps to integrate Spring AI into a Spring application to create a
chatbot. this example demonstrates how to set up the project, configure spring AI, and create a chatbot that
interacts with users using AI-generated responses. By the end of this tutorial, you wii have a fuctional chatbot
powered by Spring AI.
1. Setting Up the Project
Step 1: Create a New Spring Boot Project
Use Spring Initializr to create a new Spring Boot project. Include dependencies for Spring Web and Spring AI.
Using Spring Initializr:
- Go to start.spring.io
- Select
- Project: Maven Project
- Language: Java
- Spring Boot: 3.0.0 (or latest)
- Dependencies: Spring Web
- Generate the project and unzip it.
Step 2: Add Dependencies
In your project's pom.xml, add the necessary dependencies for Spring AI.

Step 1: Add API Key to Configuration
Add your OpenAI API key to application.properties or application.yml.
For application.properties:
Step 2: Configure Spring Beans
Create a configuration class to set up the necessary Spring beans, including the OpenAiClient and ChatClient.
package com.example.demo.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.ai.openai.OpenAiClient;
import org.springframework.ai.openai.OpenAiChatClient;
import org.springframework.ai.openai.ChatClient;
@Configuration
public class AppConfig {
@Bean
public OpenAiClient openAiClient() {
return new OpenAiClient();
}
@Bean
public ChatClient chatClient(OpenAiClient openAiClient) {
return new OpenAiChatClient(openAiClient);
}
}
3.Creating the Chatbox Service
Step 1: Create a Chatbox Service
Create a service to Chatbox interactions with the AI model.
package com.example.demo.service;
import org.springframework.ai.openai.ChatClient;
import org.springframework.ai.openai.model.ChatMessage;
import org.springframework.ai.openai.model.ChatRequest;
import org.springframework.ai.openai.model.ChatResponse;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public class ChatbotService {
private final ChatClient chatClient;
@Autowired
public ChatbotService(ChatClient chatClient) {
this.chatClient = chatClient;
}
public String getChatResponse(String userMessage) {
ChatMessage userMsg = new ChatMessage("user", userMessage);
ChatRequest request = new ChatRequest();
request.setMessages(List.of(userMsg));
ChatResponse response = chatClient.sendMessage(request);
return response.getReply();
}
}
Step 2: Create a Controller to Expose the Service
Create a controller a Controller to Expose the Service
package com.example.demo.controller;
import com.example.demo.service.ChatbotService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class ChatbotController {
private final ChatbotService chatbotService;
@Autowired
public ChatbotController(ChatbotService chatbotService) {
this.chatbotService = chatbotService;
}
@GetMapping("/chat")
public String chat(@RequestParam String message) {
return chatbotService.getChatResponse(message);
}
}
4. Testing the Integration
Step 1: Run the Application
Run your Spring Boot application. Ensure the application starts without errors.
Step 2: Acess the Chat Endpoint
Use Postman, curl,or your browser to test the endpoint. For example:
http://localhost:8080/chat?message=Hello, how are you?
Understanding Spring Boot Autoconfiguration for Spring AI
What is Spring Boot Autoconfiguration?
Spring Boot autoconfiguration simplifies the process of setting up Spring applications by automatically
configuring beans based on the classpath settings, other beans, and various property settings. This eliminates
the need for boilerplate code and manual configuration.
How Spring AI Uses Autoconfiguration
When you include the spring-ai-openai-spring-boot-starter dependency, Spring Boot's autoconfiguration feature
automatically configures the necessary beans for Spring AI. This means that Spring AI will:
1.Detect the presence of Spring AI and OpenAI client libraries on the classpath.
2.Read the properties defined in application.properties or application.yml (e.g., openai.api.key).
3.Automatically configure and instantiate the OpenAiClient and ChatClient beans.
This automatic configuration reduces the setup time and effort, allowing developers to focus on building the core
functionalities of their application.
Example of Autoconfiguration
With the spring-ai-openai-spring-boot-starter, you don't need to manually define and instantiate the beans for
OpenAiClient and ChatClient. Simply including the starter dependency and providing the necessary configuration
properties is enough to set up the AI components in your Spring Boot application.
package com.example.demo.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.ai.openai.OpenAiClient;
import org.springframework.ai.openai.OpenAiChatClient;
import org.springframework.ai.openai.ChatClient;
@Configuration
public class AppConfig {
@Bean
public OpenAiClient openAiClient() {
return new OpenAiClient();
}
@Bean
public ChatClient chatClient(OpenAiClient openAiClient) {
return new OpenAiChatClient(openAiClient);
}
}
Conclusion
This tutorial demonstrated how to set up and use Spring AI to create a chatbot in a Spring Boot application. You
learned how to configure Spring AI, create a service to interact with the AI model, and expose an endpoint for
user interaction.
Additionally, we covered how Spring Boot autoconfiguration simplifies the setup process by automatically
configuring necessary beans. This setup allows you to integrate AI-powered chat functionalities into your Spring
Boot applications, enhancing user experience with intelligent and dynamic responses.
Explore further customization and enhancements to leverage the full potential of AI in your projects.